If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+3x+5=0
a = -6; b = 3; c = +5;
Δ = b2-4ac
Δ = 32-4·(-6)·5
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{129}}{2*-6}=\frac{-3-\sqrt{129}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{129}}{2*-6}=\frac{-3+\sqrt{129}}{-12} $
| 2x/3+3=5 | | 5+3y=39 | | 45,455*x+481,8=55 | | 55=45,455x+481,8 | | 55=45,455*x+481,8 | | 6x+19=6+3x | | 9x-28=3x+82 | | X^2+5+2x=4 | | X2+5-2x=4 | | 72-x=-18 | | 3^2x-7*3^x+12=0 | | X/5=x/2 | | 3z+z+2+5z-6=41 | | -(X/5)-(x/2)=0 | | 10v+120=360 | | 7x+x=208 | | 123+10v=360 | | 3x-8/2x+5=1/3 | | 9z+162=360 | | F(x)=3x(4x-7) | | 144+18z=180 | | 8p+60=180 | | 5s+300=540 | | X3*(2+4x)=42 | | 9=y/5 | | 3/11=u/8 | | 3/4x+2=3x-1/6 | | 20-4/(1+3)=x | | 2*x+2*x+1+2*x-4=34 | | -12r-12r+-6=18 | | -27g+-29=-110 | | 20-3g=14 |